Precalculus

12-02 Evaluating Limits

Indeterminant Form

$$\lim_{x \to c} f(x) = \frac{0}{0}$$

Dividing out technique

- _____ common factors
- 3. Then find the

Evaluate $\lim_{x \to 3} \frac{x^2 - 8x + 15}{x - 3}$

Rationalizing Technique

- Get _____ out of ___

Evaluate $\lim_{x\to 0} \frac{\sqrt{x+9}-3}{x}$

One-sided Limits

- Limit found from only _____ direction
- $\lim_{x \to c^{-}} f(x) \text{from} \underline{\qquad}$ $\lim_{x \to c^{+}} f(x) \text{from} \underline{\qquad}$

Evaluate

$$\lim_{x\to 0^-}\frac{|x|}{4x}$$

Precalculus 12-02	Name:
1 Tecalculus 12-02	Ivanic.

Λ	lim	i+	from	63	اديا	luc
А	ш	Hι	11 0111	Cal	ıcuı	us

$$\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}$$

• gives indeterminant case

For the function $f(x) = 2x^2 + 1$ find $\lim_{h \to 0} \frac{f(2+h) - f(2)}{h}$